Multiple Signal Classification for Determining Direction of Arrival of Frequency Hopping Spread Spectrum Signals

1LT Fawwaz Alsubaie - Royal Saudi Air Force
Presented at the Saudi Symposium for RADAR Technology
10 Dec 2014
Disclaimer

The views expressed in this research are those of the authors, and do not reflect the official policy or position of the Royal Saudi Air Force, Ministry of Defense, or the K.S.A Government. This researched has been approved for public release; distribution unlimited.
Personal Background

- MS in Electrical Engineering at the Air Force Institute Of Technology, March 2014.
- BS in EE at KFUPM in July 2011.
- M&S of DOA estimation.
- M&S of coded and un-coded communication systems.
- M&S of Radar range estimation.
- M&S of many multipath topology terrain estimation.
- Proof of concepts of EW components on UAV.
- I&S of many Jamming techniques on Rice FPGA board.
- M&S of SHM (Detection problem).
- Currently working on SDR Simulation on Raspberry Pi chip.
• Motivation.
• Assumptions.
• MUSIC Algorithm.
• Current Work.
• Developed Work.
• Results and Conclusion.
• Questions and Discussion.
Motivation

- Cognitive Radio.
- Direction of Arrival DOA.

Research Goal

- DOA of FHSS.
- Robust algorithm.
- Improving current implementation.
Research Motivation
FHSS Signals are common in military applications:

– Joint Tactical Information Distribution System JTIDS
Assumptions

- Different DOA.
- Sampling is greater than Signal Nyquist Frequency.
- Known number of primary users.
- Known hopping pattern.
- AWGN.
- Non-coherent detection / Slow hopping.

Modulations

- FHSS.
- PSK.
MUSIC Algorithm

Drivers

- High resolution.
- Resilience to noise.
- Robust / efficient.
- Eigenstructure method.
MUSIC Algorithm

Method \([2,4,6]\)

- Received matrix at time \(t\)
 \[X = AS(t) + W(t) \]
 \[R_{xx} = AR_{ss}A^H + R_{nn} \]
- Search for steering vector \(\mathbf{v}\) to noise subspace.
- \(\mathbf{v}\) convey \(\theta\)
Problem Scheme

User D with θ_0 at $\{f_1, \ldots, f_5\}$

User 2 with θ_2 at $\{f_1, \ldots, f_5\}$

User 1 with θ_1 at $\{f_1, \ldots, f_5\}$

Array Sensor (M=6)

AWGN Channel No/2

MUSIC Algorithm
Current Work

- Research on wideband MUSIC DOA estimation
 - Incoherent Approach.
 - Coherent Approach.
 - The temporo-spatial Approach.
 - Frequency dependent modeling.
 - Rational Estimation.
Current vs. Developed

Need to know hopping sequence

Need to know number of users D

Start

Calculate the $M \times M$ Autocorrelation matrix R_{xx} of the received data X at each frequency bin f

Calculate eigenvalues and eigenvectors of R_{xx} at each f

Construct a matrix consists of noise eigenvectors U_n for at f

At each f, generate steering vectors y for all angles between 0 and $\pi/2$ and then project on U_n.

Sum the projection coefficient over all frequency bins.

Square each coefficient, sum them and take the inverse. Peaks of P represents DOA

End

Need to know f

Calculate the $M \times M$ Autocorrelation matrix R_{xx} of the received data X

Calculate eigenvalues and eigenvectors of R_{xx}

Need to know number of users D

Construct a matrix consisting of noise eigenvectors U_n.

Generate steering vectors y for all angles between 0 and $\pi/2$ and then project on U_n.

Calculate the projection of y on U_n for all steering vectors y.

Square the projection coefficients and take the inverse. Peaks of P represent DOA at f

Repeat for all hopping channels

Take the mean of the DOAs

End
SNR

1km 1 degree 17m!

National Center for Sensors and Defense Systems Technology
Hs

- Single Frequency Algorithm
- FHSS Algorithm

Bias(θ) (degrees)

Number of hops H_s

Number of hops H_s
M

Graphs:

- **Beam power (dB):**
 - **M=10:**
 - Green line: Single Frequency Algorithm
 - Yellow line: FHSS Algorithm
 - Blue line: \(\theta_1 \)
 - Light blue line: \(\theta_2 \)
 - **M=15:**
 - Green line: Single Frequency Algorithm
 - Yellow line: FHSS Algorithm
 - Blue line: \(\theta_1 \)
 - Light blue line: \(\theta_2 \)
 - **M=20:**
 - Green line: Single Frequency Algorithm
 - Yellow line: FHSS Algorithm
 - Blue line: \(\theta_1 \)
 - Light blue line: \(\theta_2 \)
 - **M=25:**
 - Green line: Single Frequency Algorithm
 - Yellow line: FHSS Algorithm
 - Blue line: \(\theta_1 \)
 - Light blue line: \(\theta_2 \)
Conclusion

The research has advanced the research on DOA for FHSS:

- Noise levels.
- Accuracy of estimation (target recognition).
- Capitalization on the spectrum.
- Robust algorithm (Cost saving).
Q&A